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Long Non-Coding RNAs as Regulators of Angiogenesis:  
A Mini-Review

Qiuwang Zhang

Abstract

While only about 5-10% mammalian transcripts act as mRNAs, the 
vast majority of them do not have protein-coding capability, of which, 
a class of non-coding RNAs with a length of over 200 nucleotides 
are defined as long non-coding RNAs (lncRNAs). It has been shown 
that lncRNAs interact with RNA, DNA, or proteins through diverse 
mechanisms to regulate gene expression, thereby controlling a wide 
range of biological processes. Angiogenesis, a process of new blood 
vessel formation from pre-existing ones, occurs under both physi-
ological and pathological conditions. It is involved in many diseases. 
In this article, lncRNA regulatory roles in angiogenesis and their ther-
apeutic potentials were reviewed and discussed.
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Introduction

Transcripts of eukaryotic genomes differ in size and protein-
coding capability. Genome-wide studies have revealed that 
only 5-10% mammalian transcripts function as mRNAs while 
the vast majority of them do not have protein-coding capability 
[1-3]. Based on the size, a class of non-coding RNAs with a 
length of over 200 nucleotides are defined as long non-coding 
RNAs (lncRNAs) [4, 5]. It is known lncRNAs regulate gene 
expression through a variety of mechanisms involving chro-
matin remodeling, the regulation of splicing and the control of 
microRNA function [5-8]. Studies have shown dysregulation 
of lncRNAs in many disease states, implication of lncRNAs in 
disease pathogenesis [9-15].

Angiogenesis is a process of new vessel formation from 
pre-existing ones, which is controlled by multiple angiogenic 
molecules and signaling pathways. It occurs under both physi-

ological and pathological conditions. Angiogenesis is involved 
in wounding healing, tumor growth and metastasis, inflamma-
tion and many other disorders. Targeting abnormal angiogen-
esis is an important therapeutic strategy for various diseases 
[16-18]. In this article, several recently emerged angiogenic 
lncRNAs and their potentials as therapeutic targets were re-
viewed and discussed.

LncRNA Maternally Expressed Gene 3 (MEG3)

Encoded by the MEG3, LncRNA MEG3 is a tumor suppres-
sor [19]. Recently, several lines of evidence suggest a role for 
MEG3 in angiogenesis [20-23]. It is shown that the embryonic 
brain of MEG3–/– mice has remarkably elevated VEGF-A and 
VEGF-receptor 1 mRNA levels compared with that of wildtype 
littermates, indicating greater angiogenic activity in the brain 
after MEG3 knockout [20]. Indeed, MEG3-null embryos have 
a higher cortical microvessel density [20]. Increased expres-
sion of MEG3 in senescent human umbilical vein endothelial 
cells (HUVECs) is detected by RNA deep sequencing technol-
ogy, and MEG3 elevation is associated with reduced HUVEC 
sprouting activity [21]. When MEG3 expression is suppressed, 
the impaired angiogenic activity of senescent HUVECs is 
restored. The inhibitory effect of MEG3 in angiogenesis has 
been further validated in a murine hind-limb ischemic model, 
as significantly increased new vessels and markedly improved 
blood flow are observed in the ischemic hind-limb after MEG3 
silencing [21]. In line with these findings, Qiu et al have re-
ported that knockdown of MEG3 in RF/6A endothelial cells 
promotes cell proliferation, migration and tube formation, and 
the mechanistic study suggests MEG3 impedes RF/6A cell an-
giogenic activity by blocking the activation of the PI3K-Akt 
signaling pathway [22]. More recently, another group dem-
onstrates that MEG3 overexpression significantly suppresses 
endothelial proliferation and in vitro angiogenesis, whereas 
knockdown of MEG3 has the opposite effect [23]. These data 
indicate MEG3 is a negative regulator of angiogenesis.

LncRNA Metastasis-Associated Lung Adeno-
carcinoma Transcript 1 (MALAT1)

The MALAT1, an LncRNA that was originally described to be 
associated with metastasis of lung cancers [14], exhibits pro-
angiogenic properties [10, 24-28]. MALAT1 deficiency results 
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in impaired HUVEC proliferation, which is in accord with in 
vivo findings, as the number of proliferating endothelial cells 
and the vessel density in the retina of MALAT1-/- mice were 
significantly lower than those of wildtype controls [24]. Li et al 
have shown that suppression of MALAT1 markedly compro-
mises the ability of HUVECs to form capillary-like structures 
[25]. MALAT1 knockdown also leads to decreased prolifera-
tion of retinal RF/6A endothelial cells through the regulation 
of the p38/MAPK signaling pathway [26]. In human umbilical 
cord mesenchymal stem cells (SMCs), MALAT1 up-regulates 
VEGF expression, and the conditioned medium from SMCs 
overexpressing MALAT1 enhances HUVEC tube formation 
[10]. Tumor angiogenesis plays a pivotal role in tumor growth 
and metastasis. LncRNA MALAT1 promoting tumor angio-
genesis has also been reported [25, 27, 28]. Two groups have 
found lncRNA MALAT1 promotes tumor angiogenesis by 
mediating the production of fibroblast growth factor-2 (FGF-
2). Huang et al reported that LncRNA MALAT1 up-regulated 
FGF-2 in tumor-associated macrophages, thereby boosting 
angiogenesis and furthering thyroid cancer cell migration and 
invasion [27]. Augmented expression of LncRNA MALAT1 
has been detected in human neuroblastoma cells under hypox-
ic conditions, which is associated with dramatically increased 
production of FGF-2 from neuroblastoma cells, leading to ro-
bust angiogenesis contributing to tumor growth [28].

Other Angiogenic LncRNAs

LncRNA MANTIS has been shown to be elevated in endothe-
lial cells isolated from glioblastoma but reduced in pulmonary 
artery endothelial cells from lungs of patients with end stage 
idiopathic pulmonary arterial hypertension [29]. Knockdown 
of MANTIS in endothelial cells leads to attenuated cell migra-
tion, proliferation and tube formation. Thus, MANTIS posi-
tively maintains endothelial angiogenic capacity [29]. LncRNA 
IGF2AS expression is augmented in myocardial microvascular 
endothelial (mMVE) cells isolated from rats with type 2 diabe-
tes. Inhibition of lncRNA IGF2AS in mMVE cells increases cell 
proliferation through up-regulating insulin-like growth factor 2 
and VEGF [30]. LncRNA MIAT has emerged as an angiogenic 
activator, as repression of MIAT compromises the prolifera-
tive ability of endothelial cells [31]. High glucose can induce 
the expression of MIAT in multiple endothelial cells including 
human microvascular endothelial cells, HUVECs and retinal 
endothelial cells (RF/6A), suggesting MIAT might be involved 
in diabetes mellitus-induced microvascular dysfunction [31]. 
SENCR is a vascular-enriched lncRNA and its expression is di-
minished in endothelial cells isolated from patients with critical 
limb ischemia or premature coronary artery disease [32]. Over-
expression of SENCR in HUVECs stimulates cell migration and 
promotes tube formation through upregulation of proangiogenic 
chemokines CCL5 and CX3CL1 [32]. Two important pro-angi-
ogenic lncRNAs LINC00323-003 and MIR503HG are induced 
in endothelial cells by hypoxia. Silencing LINC00323-003 or 
MIR503HG results in defective HUVEC proliferation. Howev-
er, HUVECs deficient in LINC00323-003 or MIR503HG differ 
in their ability to form capillary-like structures. Knockdown of 

LINC00323-003 leads to reduced tube formation in HUVECs, 
while MIR503HG deficiency does not affect tube formation sig-
nificantly [33].

Angiogenic LncRNAs as Therapeutic Targets

The research field of angiogenic lncRNAs is evolving. The 
mechanisms governing lncRNA angiogenic actions remain 
largely elusive, impeding the investigation of angiogenic 
lncRNAs as therapeutic targets. Indeed, there are only a lim-
ited number of studies that have explored angiogenic lncRNAs 
for therapeutic purposes. MEG3 knockdown has been exam-
ined for the treatment of stroke in a rat ischemic stroke model. 
In vivo application of lentiviral particles expressing hairpin 
RNA to suppress MEG3 increases microvessel density in the 
ischemic region and reduces brain lesion [34]. The Gapmer an-
tisense oligonucleotide can specifically and effectively cleave 
target RNAs including lncRNAs in vivo and appears as a prom-
ising therapeutic agent [35]. The locked nucleic acid Gapmer 
directed against MALAT1 has been therapeutically tested in a 
mouse model of hind-limb ischemia. Intraperitoneal injection 
of the Gapmers is able to inhibit MALAT1 expression in both 
control and ischemic muscle tissues, and MALAT1 repression 
significantly reduces capillary density and blood flow in the 
ischemic muscles [24]. These data suggest angiogenesis can 
be enhanced or blocked by modulating lncRNA expression, 
which could be potentially applied for the treatment of angio-
genesis-related diseases.

Conclusions

LncRNAs plays an important role in angiogenesis. Targeting 
lncRNAs as a novel therapeutic approach for angiogenesis-re-
lated diseases seems promising. However, numerous issues are 
to be solved such as how to avoid off-site effect of therapeutic 
RNA molecules, how to efficiently deliver in vivo therapeu-
tic molecules, and how to minimize the adverse effects, which 
warrants further studies.
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