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Abstract

Background: To prevent the onset and progression of atherosclerotic 
cardiovascular disease, we previously synthesized a mimetic peptide 
of apolipoprotein A-I (Fukuoka University ApoA-I Mimetic Peptide 
(FAMP)), which is a major component of high-density lipoprotein 
(HDL). We reported that FAMP enhanced HDL-induced endothelial 
tube formation to help counteract cardiac muscle ischemia, and had 
anti-inflammatory effects or an effect on cholesterol efflux capacity 
to prevent coronary atherosclerosis.

Methods: We have now synthesized an improved FAMP (i-FAMP) 
and examined whether its effects are stronger than those of conven-
tional FAMP. First, human coronary artery endothelial cells (HCECs) 
were used to measure the tube-forming effects of these peptides. In 
addition, as an anti-inflammatory effect, we also investigated their 
inhibitory effects on the secretion of monocyte chemotactic protein-1 
(MCP-1) from cells. As an anti-apoptotic effect to prevent cardiac 
muscle ischemia, the inhibitory effect on caspase-3/7 activation was 
also measured in H9C2 rat cardiomyocyte cells.

Results: HDL promoted HCEC tube formation and suppressed MCP-
1 secretion from HCECs and caspase-3/7 activation in H9C2 cells. 
The tube formation under HDL with i-FAMP treatment was stronger 
than that under HDL with FAMP. HDL in the presence of FAMP or 
i-FAMP significantly suppressed MCP-1 secretion compared to HDL 
in the absence of FAMP or i-FAMP, whereas there were no significant 
changes in MCP-1 secretion between HDL with FAMP and HDL with 
i-FAMP treatment. HDL with i-FAMP and FAMP did not enhance the 
suppression of caspase-3/7 activation by HDL.

Conclusions: HDL affected HCEC tube formation and had anti-in-
flammatory and anti-apoptotic effects; i-FAMP may or may not en-

hance these actions. In some cases, these effects were stronger than 
those of conventional FAMP.
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Introduction

A low blood level of high-density lipoprotein cholesterol 
(HDL-C) is a risk factor for atherosclerotic cardiovascular dis-
ease (ASCVD) [1]. This risk has been attributed to the ability 
of HDL to take up cellular cholesterol from the periphery and 
to mediate the transport of excess cholesterol to the liver (re-
verse cholesterol transport (RCT)) [2]. Cholesterol efflux ca-
pacity has been shown to be a strong inverse predictor of CVD 
status [3]. Thus, it is important to be able to increase HDL 
levels and enhance its biochemical function in RCT. Although 
HDL is a target in the treatment of ASCVD, there are currently 
only a limited number of therapeutic options to increase and 
enhance the function of HDL.

However, an exciting new therapeutic strategy, HDL ther-
apy using reconstituted (r)HDL and apolipoprotein (Apo)A-I 
mimetic peptides, has been developed [4-7]. We have also been 
studying HDL therapy using rHDL to improve the function of 
HDL, and to induce an anti-arrhythmogenic effect and prevent 
left ventricular remodeling [8-10]. ApoA-I mimetic peptides 
in addition to rHDL have many pleiotropic effects [11], such 
as anti-oxidant, angiogenic, anti-inflammatory and anti-throm-
botic properties, in addition to their ability to enhance RCT. 
We previously developed an apolipoprotein A-I mimetic pep-
tide (Fukuoka University ApoA-I Mimetic Peptide (FAMP)) 
and showed that it has an anti-atherosclerotic effect in mice 
[12, 13]. We also reported that FAMP enhanced HDL-induced 
endothelial tube formation to prevent cardiac muscle ischemia, 
and had an anti-inflammatory effect or an effect on choles-
terol efflux capacity to prevent coronary atherosclerosis [14-
17]. More recently, we developed improved FAMP (i-FAMP), 
which has an even stronger anti-atherosclerotic effect to pre-
vent the onset and progression of ASCVD [18]. We hypoth-
esized that i-FAMP could also have pleiotropic effects, such 
as endothelial tube-forming or anti-apoptosis effects to pre-
vent cardiac muscle ischemia and an anti-inflammatory effect, 
which may be stronger than those of FAMP. Thus, we sought 
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to demonstrate that i-FAMP may be more useful than FAMP 
for preventing ASCVD in in vitro studies. We analyzed wheth-
er i-FAMP has anti-inflammatory and anti-apoptotic effects, 
whether it induces endothelial tube formation, and whether 
these effects of i-FAMP are greater than those of FAMP.

Materials and Methods

Preparation of FAMP and i-FAMP

FAMP and i-FAMP were synthesized by an Fmoc (N-[9-flu-
orenyl] methoxycarbonyl)-based solid-phase peptide synthesis 
using an automated peptide synthesizer (Pioneer and Model 
433A, Applied Biosystems, Inc., Waltham, MA) using the 
standard Fmoc methodology described previously [12].

Measurement of the secretion of monocyte chemotactic 
protein-1 (MCP-1)

Human coronary endothelial cells (HCECs, Clonetics, San 
Diego, CA) were cultured and grown in media. In the experi-
ments, HCECs were grown under serum-free conditions for 24 
h and incubated with the indicated concentrations of samples 
for 24 h. Samples were incubated with HDL with and without 
FAMP or i-FAMP. The secretion of MCP-1 as a marker of in-
flammation [19] in the medium from HCECs was measured by 
ELISA kits (R&D Systems, Minneapolis, MN).

HCEC tube formation assay on Matrigel

Matrix gels were purchased from Chemicon International, Inc. 
(Temecula, CA) [20]. The gels were allowed to polymerize in 
a 96-well plate as described previously [21]. Briefly, HCECs 
were seeded and grown under serum-free conditions. In some 
experiments, cells were cultured in the presence or absence 
of different kinds of samples. After cells were washed, HCEC 
tube formation was observed, and we performed a “pixel anal-
ysis” of the area of tube formation to calculate the total number 
of pixels. The number was counted in three different areas and 
the average value was determined for each sample. The con-
trol sample was defined as 100% tube formation, and the % 
increase or decrease in tube formation relative to the control 
was calculated for each sample.

Measurement of caspase-3/7 activities under various treat-
ments in H9C2 rat cardiomyocyte cells

As an anti-apoptotic effect to prevent cardiac muscle ischemia, 
the inhibitory effect on caspase-3/7 activation was also meas-
ured in H9C2 rat cardiomyocyte cells. Briefly, H9C2 cells 
were seeded and grown under serum-free conditions in the 
presence or absence of the indicated concentrations of doxoru-
bicin. In some experiments, cells were cultured in the presence 

or absence of different kinds of samples. Caspase-3/7 activi-
ties were measured by a luminescent assay using the Caspase-
Glo® 3/7 assay kit (Promega Corp., Madison, WI). Following 
caspase cleavage of the proluciferin substrate, a substrate for 
luciferase is released, which results in the luciferase reaction 
and the production of light. The luminescence of each sample 
was measured using a plate-reading luminometer.

Statistical analysis

Statistical analysis was performed using the Stat View statistical 
software package (Stat View 5; SAS Institute INC., Cary, NC). 
Data are expressed as the mean ± standard deviation (SD). The 
significance of differences between mean values was evaluated 
by an unpaired t-test or one-way analysis of variance followed 
by Fisher’s protected-least-significant-difference test, as appro-
priate. Statistical significance was set at < 0.05.

Results

Effects of HDL in the absence or presence of the indicated 
concentrations of FAMP or i-FAMP on HCEC tube forma-
tion

Fifty µg/µL of HDL, but not FAMP or i-FAMP, significantly 
induced HCEC tube formation (Fig. 1A). HDL in the presence 
of FAMP or i-FAMP significantly induced tube formation 
compared to HDL alone (Fig. 1B). In addition, tube formation 
with HDL in the presence of i-FAMP was significantly greater 
than that with HDL in the presence of FAMP.

MCP-1 secretion under various treatments in HCECs

There were no significant changes in MCP-1 secretion under 
treatment with HDL, FAMP or i-FAMP (Fig. 2). HDL in the 
presence of FAMP or i-FAMP significantly suppressed MCP-1 
secretion compared to that with HDL in the absence of FAMP or 
i-FAMP, whereas there was no significant difference in MCP-1 
secretion between HDL with FAMP and HDL with i-FAMP.

Caspase-3/7 activities using HDL and/or doxorubicin in 
H9C2 cells

Doxorubicin induced caspase-3/7 activities in a dose-depend-
ent manner (Fig. 3A), and these activities were suppressed by 
HDL in a dose-dependent manner. Neither HDL with i-FAMP 
nor HDL with FAMP enhanced the suppression of caspase-3/7 
activation by HDL (Fig. 3B).

Discussion

The main finding of the present study is that i-FAMP with 
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HDL has beneficial anti-inflammatory effects and induces 
HCEC tube formation, although the effect on tube formation, 
but not its anti-inflammatory effect, was stronger than that of 
FAMP with HDL. This beneficial effect induced by i-FAMP is 
very important because one of the major therapeutic goals of 
modern cardiology is to prevent ASCVD.

Angiogenesis, the process of postnatal neovascularization, 
is a critical component of several human diseases, including 
ASCVD, cancer, diabetic microvascular disease and rheu-
matoid arthritis [22]. i-FAMP-induced HCEC tube formation 
is a physiological effect that is useful for preventing cardiac 
muscle ischemia. On the other hand, angiogenesis-induced 
atherosclerosis is a pathological condition that is associated 
with the secretion of various inflammatory substances, such as 
interleukin-6 and MCP-1. FAMP and iFAMP, at least in part, 

decreased MCP-1 secretion from the cells. In fact, we previ-
ously reported that HDL, rHDL and FAMP promoted EC tube 
formation [14, 22, 23], and this effect may be beneficial in the 
setting of ischemic diseases, such as ASCVD and peripheral 
artery disease. In fact, we have reported that HDL, rHDL and 
FAMP promoted EC tube formation [14, 22, 23], and this ef-
fect may be beneficial for ischemic diseases, such as ASCVD 
and peripheral artery disease. In addition, HDL from healthy 
subjects enhanced endothelial progenitor cell-mediated tubu-
logenesis compared to that from donors with CAD [24]. Cell 
elongation is a key cellular mechanism that promotes angio-
genesis. In the present study, HDL with i-FAMP promoted tube 
formation like cell elongation compared to HDL with FAMP. 
HDL with i-FAMP therapy might be more useful in patients 
with ischemic diseases than HDL with FAMP. i-FAMP had a 

Figure 1. (A) Effects of HDL on HCEC tube formation. (B) Effects of HDL in the absence or presence of the indicated concentra-
tions of FAMP or i-FAMP on HCEC tube formation. HDL: high-density lipoprotein; HCECs: human coronary artery endothelial 
cells; FAMP: Fukuoka University ApoA-I Mimetic Peptide; i-FAMP: improved FAMP.
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greater effect on tube formation than FAMP, as we hypoth-
esized.

Although we previously reported that i-FAMP signifi-
cantly suppresses the formation of aortic plaque by enhancing 
HDL function in a mouse model [18], we needed to analyze 
the direct role of i-FAMP in this anti-inflammatory effect inde-
pendent of its ability to enhance reverse cholesterol transport 
because inflammation plays a pathological role in the progres-
sion of atherosclerosis [20]. Although FAMP did not directly 
decrease the secretion of MCP-1, HDL with i-FAMP signifi-
cantly decreased the secretion of MCP-1 compared to that 
seen with HDL without i-FAMP. Since i-FAMP accelerated 
the generation of pre-β HDL, which is converted from mature 
HDL [18], and since Troutt et al reported that D-4F induced 
pre-β1 HDL formation in vitro in human plasma and in mice 
[25], pre-β HDL may have a stronger anti-inflammatory ef-
fect. In addition, the mechanism of action of ApoA-I mimetic 
peptides has been shown to be due to the remarkable affinity of 
pro-inflammatory oxidized lipids for these peptides compared 
with ApoA-I [26]. Although we did not perform a human study 
using FAMP, an index of HDL inflammation was significantly 
improved in participants who received D-4F compared with 
placebo [24]. Unfortunately, there was no significant differ-
ence in MCP-1 secretion between HDL with FAMP and HDL 
with i-FAMP. On the other hand, i-FAMP had a stronger anti-
atherosclerotic effect [18]. Since inflammation plays a patho-
logical role in the progression of atherosclerosis, we expected 
that the anti-inflammatory effect of HDL with i-FAMP should 
be stronger than that of HDL with FAMP. If we analyze other 
markers of inflammation, we might find a difference between 
the abilities of i-FAMP and FAMP. The anti-inflammatory ef-

fects of i-FAMP and FAMP may not be related to the differ-
ence in their anti-atherogenic effects.

Cardio-oncology or onco-cardiology seeks solutions 
to address these unmet medical needs [27]. Cardiovascu-
lar complications caused by cancer therapy include cancer 
therapy-related cardiac dysfunction (CTRCD). The anthra-
cycline antibiotic doxorubicin is used in chemotherapy for 
hematopoietic tumors, and is cardiotoxic in a dose-depend-
ent manner [28]. Although doxorubicin-induced caspase-3/7 
activities were suppressed by HDL alone, HDL with either 
i-FAMP or FAMP did not enhance this suppression of activa-
tion by HDL. Several reports have indicated the mechanisms 
by which HDL exerts an anti-apoptotic effect [29-31]. Treat-
ment with homocysteine significantly increased caspase-3 ac-
tivity whereas HDL significantly decreased it, compared to 
the homocysteine-only group [29]. HDL also prevents apo-
ptosis in endothelial progenitor cells through the inhibition 
of caspase-3 activity. HDL3 antagonizes ox-LDL-induced 
apoptosis in RAW264.7 cells by reducing the accumulation 
of toxic cholesterol [30]. In addition, palmitic acid induced 
the accumulation of reactive oxygen species which resulted 
in cardiomyocyte apoptosis and inflammation [31]. HDL at-
tenuated palmitic acid-induced lipotoxicity and oxidative dys-
function via the suppression of reactive oxygen species. Thus, 
HDL with either i-FAMP or FAMP may not enhance these 
signals compared to HDL alone.

Conclusions

HDL promoted HCEC tube formation and had anti-inflam-

Figure 2. MCP-1 secretion under various treatments in HCECs. MCP-1: monocyte chemotactic protein-1; HCECs: human coro-
nary artery endothelial cells.
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matory and anti-apoptotic effects, whereas i-FAMP may or 
may not enhance these effects. In some cases, these effects are 
stronger than those with FAMP.
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